Name:_

Follow the instructions for each question and show enough of your work so that I can follow your thought process. If I can't read your work, answer or there is no justification to a solution you will receive little or no credit!

1. Let $A \subseteq \mathbb{R}$ be a measurable set. Define the set

$$B = A \cup -A \quad \text{where} \quad -A := \{-x : x \in A\} \ .$$

Prove that B is measurable and $mA \leq mB \leq 2mA$.

2. Let A and B be two compact subsets of \mathbb{R} . Prove that the set

$$A + B = \{x + y : x \in A, y \in B\}$$

is closed and that

$$m(A+B) \ge m(A) + m(B) .$$

3. Let $\{f_n\}$ be a sequence of measurable functions on E that converges to the real-valued f pointwise on E. Prove that

$$E = \bigcup_{k=1}^{\infty} E_k$$

where for each index k, E_k is measurable, $\{f_n\}$ converges uniformly to f on each E_k if k > 1, and $m(E_1) = 0$.

4. Let f be a Lipschitz function on [0, 1]. Prove that f is differentiable almost everywhere on [0, 1].

5. Let $\{f_n\}$ be a sequence of measurable functions on (0, 1). Prove that

 $E = \{x \in (0,1) : \{f_n(x)\} \text{ is a convergent sequence}\}\$

is measurable.

6. Let $f : \mathbb{R} \to \mathbb{R}$ be a function such that $f^{-1}(c)$ is measurable for every number c. Is f necessarily measurable? Be sure to justify.

7. Prove the following limit exists and compute it:

$$\lim_{n \to \infty} \int_0^1 \frac{e^{-x} \cos x}{nx^2 + \frac{1}{n}} \, dx \; .$$

8. Prove or disprove that the Bounded Convergence Theorem holds for the Riemann integral.